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Abstract
In this paper, a RISE (Robust Integral of the Sign Error) controller with adaptive feedforward compensation terms based
on Associative Memory Neural Network (AMNN) type B-Spline is proposed to regulate the positioning of a Delta Parallel
Robot (DPR) with three degrees of freedom. Parallel Kinematic Manipulators (PKMs) are highly nonlinear systems, so
the design of a suitable control scheme represents a significant challenge given that these kinds of systems are continually
dealing with parametric and non-parametric uncertainties and external disturbances. The main contribution of this work is
the design of an adaptive feedforward compensation term using B-Spline Neural Networks (BSNNs). They make an on-line
approximation of the DPR dynamics and integrates it into the control loop. The BSNNs’ functions are bounded according to
the extreme values of the desired joint space trajectories that are the BSNNs’ inputs, and their weights are on-line adjusted
by gradient descend rules. In order to evaluate the effectiveness of the proposed control scheme with respect to the standard
RISE controller, numerical simulations for different case studies under different scenarios were performed.

Keywords Delta parallel robot · RISE control · B-spline neural network · Trajectory tracking · On-line learning

1 Introduction

PKMs have gained significant interest in recent decades
thanks to their desired features provided by their construc-
tion based on several closed-loop kinematic chains [1]. This
configuration provides some advantages to PKMs over their
serial counterparts. For instance, the overall stiffness in
PKMs is higher than concerning serial manipulators owing
to several limbs joined to a fixed base to support the trav-
eling plate where the end-effector is located, generating
more resistance against the deflections caused by external
forces or moments exerted on the end-effector [2]. Besides,
this arrangement allows to PKMs to obtain absolute greater
accuracy, better repeatability, more capacity to carry heav-
ier loads, and the ability to execute faster and more precise
movements [3]. These features make PKMs attractive solu-
tions for tasks that require high positioning accuracy and
precision, and for these reasons are widely used in prod-
uct transportation and classification tasks, haptic devices,
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agricultural applications, machine tools, laser cutting, 3D
printers, among others [4], [5], [6]. One of the most stud-
ied PKM in the literature is the DPR developed in the 80’s
by Reymond Clavel. [7]. The main distinction of the DPR
other existing PKMs concepts is the use of mechanisms
based on parallelograms. The parallelograms restrain the
orientation of the traveling plate entirely resulting in only
translational movements over the three axes of the Carte-
sian space. Besides, its closed kinematic chains are very
light, allowing this robot to reach high extreme accelera-
tions. For these features, the DPR is mainly used in Pick and
Place (P&P) tasks [4]. However, the operational workspace
of PKMs is reduced in comparison to Serial Manipula-
tors. Moreover, PKMs are known for their highly nonlinear
dynamics, which is increases considerably when the PKM is
operated at high speeds/accelerations leading to mechanical
vibration issues [8]. Additionally, the closed-loop config-
uration yields coupling dynamics; therefore, the actuators
must work in complete synchronization with each other
for not damaging the PKMs’ mechanism. The previous
problem is closely related to unstructured or/and structured
uncertainties. Geometric errors, sensors noise, components
degradation, and modeling simplifications, e.g., not consid-
ered friction or actuator dynamics, are considered the first
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kind of uncertainties. The second kind of uncertainties is
generated by parameter variations owing to operate environ-
ment or inaccurate knowledge of dynamic parameters [9].
For the PKMs to perform tasks satisfactorily, advanced con-
trol techniques should be considered to overcome the issues
and challenges mentioned above, guaranteeing the mini-
mum possible tracking error [10]. To deal with the discussed
control challenges for PKMs, we propose a RISE controller
with an adaptive feedforward term based on AMNNs. The
main contribution of the paper is the design of an adap-
tive feedforward compensation term based on BSNNs. They
make an on-line approximation of the DPR dynamics and
integrated it into the control-loop. The BSNNs’ functions
are bounded according to the extreme values o the desired
joint space trajectories that are the BSNNs’ inputs, and
their weights are on-line adjusted by gradient descend rules.
The remainder of this paper is organized as follows: In
Section 2, the state of the art of proposed control solu-
tions for robotics emphasizing in PKMs is presented. In
Section 3 the kinematic and dynamic models of a DPR
are presented. In Section 4, the proposed RISE controller
with adaptive BSNN compensation is set out in detail. To
know the effectiveness of the proposed control scheme,
numerical simulations are presented in Section 5, where the
control system is proven in two case studies under various
scenarios. Finally, conclusions are detailed in Section 6.

2 State of the Art

For PKMs, several control techniques have been devel-
oped and implemented to deal with the previously men-
tioned challenges, highlighting conventional feedback con-
trollers, nonlinear controllers, robust controllers, adaptive
controllers, or a combination of them [2]. Control schemes
based on the PD/PID feedback control have been exten-
sively used for control of PKMs, due to its easy imple-
mentation and its relatively good performance. However, in
PKMs, the performance of this type of controllers decreases
notoriously when the system is subjected to sudden changes
in the acceleration and dynamic parameter variation [11],
[12]. Robust linear control techniques such as the H∞
are used for systems affected by the presence of external
disturbances and parametric variations [13]. An efficient
implementation of a H∞ multivariable controller PKMs is
presented in [14]; in such scheme, a linearized model around
an operating equilibrium point is determined to obtain a
state-space representation of the DPR, besides that, the sen-
sitivity and complementary sensitivity transfer functions are
calculated. This technique utilizes the perturbations in the
design of the controller, but the design of this scheme is very
sophisticated and complex. RISE is a novel robust nonlin-
ear feedback control technique that is becoming popular in

robotics control. This control scheme outcomes limitations
presented in PD/PID controllers thanks to its robust nonlin-
ear term, and it ensures semi-global asymptotic stability in
the presence of general uncertain disturbances [15] besides,
its implementation is straightforward without many com-
plications as other robust techniques. This control law has
been implemented satisfactorily in PKMs, as was demon-
strated in [16]. Some modifications have been made to
the original RISE control to improve its qualities, e.g., in
[17], a RISE control with nonlinear gains was proposed
to regulate the position of a DPR. Moreover, RISE con-
trol is suitable to be combined with model-based terms to
enhance the overall system performance, as was demon-
strated in [18], where a RISE controller with computed
feedforward was proposed to regulate the trajectory tracking
of a PKM designed for machining operations. However, for
model-based controllers, the lack of accurate knowledge of
parameters may lead to degrading the controller efficiency
instead of improving it. Adaptive controllers have been
proposed to deal with the above problems. These control
schemes started from the issue that some dynamic model
elements are not accurately known. They included an adap-
tation rule which adjusts controller parameters to changes
in the controlled system according to given criteria [19].
In [20], a RISE controller with adaptive feedforward was
proposed to control a redundantly actuated PKM dealing
with the issue of parametric uncertainties. We can men-
tion other adaptive control proposals solutions making use
of artificial intelligence. For instance, in [21], a reinforce-
ment learning with a complete inverse kinematic solution
was proposed to balance the lower body of an NAO robot.
This control solution can compensate external disturbances
modifying its value function parameters. In [22], a model-
free adaptive controller was proposed to control a pneumatic
actuator. The controller makes use of a Q-function to esti-
mate the long-term performance of the adaptive control.
This solution can stabilize the system in the presence of
nonparametric and parametric uncertainties. Some adaptive
controllers make use of Artificial Neural Networks (ANNs)
to approximate unknown nonlinear dynamics and integrated
it into the control-loop [23]. In the literature, it has been
reported several adaptive control schemes based on ANNs
applied to robotics control. We can distinguish two archi-
tectures of ANN. The first one is the multi-layer ANN.
This configuration increases the computation complexity
since the information travels bidirectionally between the
hidden layers of the neural network, besides they entail
a considerable computational cost requiring long training
time [24]. The second one is the single-layer ANN. This
kind of ANN requires less computational process due to its
single layer of neurons; the AMNN belongs to this con-
figuration. These kinds of ANN assume the principle of
local generalization, implying that for a specific input, just
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a portion of the ANN will be involved; thus, the computa-
tional effort is reduced. Moreover, their activation functions
are linear respect to the adaptable weights so, straightfor-
ward instantaneous learning rules can be used to update
their adjusted weights [25]. There have been some recent
advances in the field of robotics control using ANN. In the
branch of multi-layer-based ANN, a nonlinear adaptive con-
troller was proposed to regulate the trajectory tracking of
a Cable-driven robot in [26]; the controller can compen-
sate for parametric and non-parametric uncertainties of the
nonlinear robot dynamics; the weights are updated trough
projection operators. Besides, it has been reported several
control schemes based on single-layer ANNs. In [27], a
modified version Cerebellar Model Articulation Controller
(CMAC) was proposed to find optimum weigh values to
outstrip nonlinearities like gravity. The proposed algorithm
freezes a set of adaptive weights in a feedforward-like com-
ponent in the CMAC. When the feedforward component
has been established, the algorithm starts to learn another
set of weights which contribute to feedback-like terms in
the CMAC and these weights get frozen when they no
longer reduce a cost-functional This control solution based
in the CMAC ANN was validated with numerical simu-
lations to a two-link flexible-joint robot. In [28], a novel
output feedback controller with a feedforward term based
on the Radial Basis Function (RBF) ANN was proposed
to compensate for uncertainties in the dynamic model of a
robotic exoskeleton. This advanced control solution requires
only position information for the RBF inputs. In [29], a
PD controller with a BSNN feedforward compensation was
applied to a DPR to regulate the trajectory tracking for a
P&P application, demonstrating that the addition of intel-
ligent compensation terms may reduce the tracking error
considerably and might cancel the steady-state error for the
PD controller. However, only the error signal was taken into
consideration as inputs of the BSNN so that the resulting
dynamic approximation was not accurate.

3 DPRModeling

3.1 SystemDescription

The DPR is a 3-DOF (Degrees of Freedom) PKM designed
for P&P tasks; its mechanical structure is composed mainly
of two platforms, fixed base, and traveling plate; the last one
performs translational movements with a fixed orientation.
The traveling plate is connected to the fixed base through
three identical kinematic chains. Each kinematic chain
consists of two parts, a rear-arm and a forearm, which
is composed of two parallel bars, both are connected by
way of passive spherical joints. The DPR rear-arms are
mounted directly to the actuators located on the fixed base

through rotational joints, while the forearms are connected
to the traveling through a set of passive spherical joints.
The dynamic model is represented in the joint space
whose variables are denoted as q = [q1 q2 q3]T however,
the position of the traveling plate is given in Cartesian
coordinates as X = [x y z]T . The schematic diagram of the
DPR is shown in Fig. 1.

3.2 Inverse Kinematic Model

Inverse Kinematic Model (IKM) for PKMs with delta-like
architecture is formulated trough the Loop Closure Method
[30]. Considering Fig. 1 the closed-loop equation for the
DPR is established as follows:

||BiCi ||2 = l2
i (1)

Ai = Rb

[
cos(αi) sin(αi) 0

]T
(2)

where Ai , ∀i = 1...3 represents the location of the three
actuated joints expressed in the fixed reference frame. Rb is
the fixed-base radius, the actuated joints are placed with the

following angles α = [
3π
2

π
6

5π
6

]T
.

The points Bi and Ci whose coordinates are expressed in the
fixed reference frame O − xo, yo, zo are defined as follows:

Bi = Ai + L
[
cos(αi) cos(qi) sin(αi) cos(qi) − sin(qi)

]T

(3)

Ci = [
Rp cos(αi) + x Rp sin(αi) + y z

]T
(4)

being L the arm length and Rp is the traveling-plate radius.
An auxiliary frame located at Ai-xi, yi, zi is defined, where

Fig. 1 Illustration of a DPR kinematic chain
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the auxiliary vectors ixi and iyi are defined as:

ixi = [
cos(αi) sin(αi) 0

]T
(5)

iyi = [− sin(αi) cos(αi) 0
]T

(6)

Having defined all the equations that involve the closed-loop
equation the expression (1) is re-write in the following form
to obtain the values of qi .

Di sin(qi) + Ei cos(qi) + Fi = 0 ∀i = 1, 2, 3 (7)

where Di = 2Li(AiCi · zo), Ei = 2Li(AiCi ·i xi ), and
Fi = l2

i − L2
i − ||AiCi ||2. Solving (7) the values of qi can

be obtained using the following expression:

qi = arctan

(−Di ± √
Δi

Fi − Ei

)
(8)

Being Eq. 8 the corresponding IKM for the DPR, with
Δi = D2

i + E2
i − F 2

i .

3.3 Inverse Dynamic Model

The Inverse Dynamic Model (IDM) for the DPR has been
developed considering the methodology presented in [20].
For PKMs with delta-like architecture, some simplifications
to develop their dynamic model are considered, these
simplifications are discussed in more detail in [30] and [31].
The simplifications are the following:

– Since obtaining an accurate frictional model for PKMs,
the frictional forces dry and viscous are omitted in the
analysis.

– The rotational inertia of the forearms is neglected.
Nevertheless, its mass is divided into two equivalent
parts; one part is added to the rear-arm mass, and the
other part is joined to the traveling plate mass. This
simplification is justified if the mass of the forearms is
smaller than the other components of the robot.

We can establish the inverse dynamic model in function of
the torques produced by the actuators �act ∈ R

3×1, the rear-
arms with a half mass of the forearms �rf ∈ R

3×1 and,
the traveling plate with the other half mass of the forearms
�f tp ∈ R

3×1 as follows:

� = �act + �rf + �f tp (9)

The produced torques owing to motor’s inertia are obtained
as follows:

�act = Iact q̈ (10)

where Iact = diag([Iact ]) ∈ R
3×3 is a square

diagonal matrix containing the inertia values of each motor.
Considering the second simplification mentioned above,
one can derive the dynamics of the rear-arms and forearms

as follows. For the rear-arms torques are computed through
the following equation:

�ra(t) = Ira q̈ + MragLc cos(q) (11)

where Ira = diag([Ira]) ∈ R
3×3 is the inertia matrix of

the rear-arms’, cos(q) is a vector of 3 × 1, representing the
cosine of each angle qi ∀i = 1, ..., 3, Mra = diag([mra]) ∈
R

3×3 is the mass matrix of the rear-arms’, Lc is the distance
from the rotational axis of the rear-arm to its gravity center,
and cos(q) is composed as follows:

cos(q) = [cos(q1) cos(q2) cos(q3)]T (12)

Considering the second simplification, one may express the
torque contributions of the forearms by means the following
expression:

�f a(t) = If a q̈ + Mf agLcos(q) + JT
invMnf a(Ẍ + G) (13)

Where If a = diag([L2 mf a

2 ]) ∈ R
3×3, Mf a =

diag([mf a

2 ]) ∈ R
3×3,and Mnf a ∈ R

3×3 = diag([3mf a

2 ])
where mf a is the forearm mass considering the two parallel
bars. Jinv ∈ R

3×3 is the inverse Jacobian matrix, Ẍ ∈ R
3×1

is the Cartesian acceleration vector of the traveling plate, L

is the rear-arm length, and G = [
0 0 g

]T ∈ R
3×1 is the

gravity vector with g = 9.81 m/s2. Applying the Newton-
Euler equation to the traveling plate we obtain the following
expression:

Fp = Gp (14)

where Fp and Gp are the inertial and gravity forces
acting on the traveling plate represented in the following
expressions:

Fp = MpẌ (15)

Gp = −MpG (16)

being Ẍ ∈ R
3×1 the Cartesian acceleration vector. The mass

matrix of the traveling plate is composed as follows:

Mp = diag([mp mp mp]) (17)

where mp is the traveling plate mass. The inverse Jacobian
matrix is used to compute the traveling plate torque
contributions produced by the inertial forces and gravity
force as follows:

�tp = JT
invMp(Ẍ + G) (18)

The dynamic equation of the forearms (13) should be split
into two parts, one part is added to Eq. 18, and the other
part is added to Eq. 18 to obtain �rf and �f tp. The torque
contributions due to the rear-arms and the half mass of the
forearms are given as follows:

�rf = Irf q̈ + Mrf gcos(q) (19)
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Where Irf ∈ R
3×3 is a square diagonal matrix whose

elements are formed by: Irf = Ira + L2 mf a

2 . The resulting
mass matrix is expressed as:

Mrf = diag([mrf mrf mrf ]) (20)

With mrf = mraLc + mf aL

2 . To express the inverse dynamic
model in function of the joint space variables, it is essential
to take into consideration the following relations based on
the inverse Jacobian matrix:

Ẋ = Jinvq̇ (21)

Ẍ = Jinvq̈ + J̇invq̇ (22)

Substituting Eqs. 18, 19, and 10 in Eq. 9 and taking into
account (12) we state the inverse dynamic model as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) = � (23)

where:

– M(q) = Iact + Irf + JT
invMpJinv

– C(q, q̇) = JT
invMpJ̇inv

– G(q) = (Mrf cos(q) + JT
invMp)G

The kinematic and dynamic parameters of the DPR are
shown in Tables 1 and 2 respectively.

4 Control Strategy

The main objective of a DPR is to perform high speed and
high accuracy P&P operations with the smallest possible
tracking error. To reach this objective, it is crucially
essential to design a control scheme capable of keeping the
precision under abrupt changes of mass and acceleration.
To satisfy these demands, we propose integrating the
RISE control algorithm with an adaptive feedforward
compensation term. The main feature of RISE controller
can ensure semi-global asymptotic stability in the presence
of general uncertain disturbances [32]. It is well known
in robotics control that the addition of a feedforward term
can compensate the inherent nonlinearities and improve
the system performance. However, sometimes, the dynamic
model or dynamic parameters as masses and inertia
are unknown or not measurable. Consequently, wrong
parameter estimation or an inaccurate dynamic model can

Table 1 Summary of the DPR kinematic parameters

Parameter Description Value

L Rear-arm length 0.3 m

l Forearm length 0.624 m

Rb Base platform radio 0.1267 m

Rp Traveling plate radio 0.0497 m

Table 2 Summary of the DPR dynamic parameters

Parameter Description Value

mtp Mobile platform mass 0.19 Kg

mra Rear-arm mass 0.29 Kg

mf a Forearm mass 0.28 Kg

Ira Rear-arm inertia 0.0213 Kgm2

Iact Motor inertia 3.8 ×10−6 Kgm2

harm the efficiency of the control scheme instead of
improving. ANNs are an attractive solution for nonlinear
modeling systems due to their ability to identify unknown
dynamic models through a set of inputs and outputs related
to each other. BSNN is a kind of ANN formed by three
parts: A lattice used to normalize the inputs, a single layer
set of basis functions defined over the lattice, and the
network output, which is a linear combination of the basis
functions with the adjustable weights [33]. This ANN is
very suitable for nonlinear model identification in real-time
due to its construction formed by only one hidden layer of
basis functions avoiding large number calculus compared to
any multilayer ANN. In this work, we employed BSNNs to
approximate the inverse dynamics for each kinematic chain
of the DPR. Having in mind the benefits of RISE control
and ANN, we establish the following control scheme for the
DPR:

� = �RISE + �̂(qd, q̇d, q̈d, e1) (24)

where �RISE ∈ R
3×1 corresponds to feedback RISE

feedback control and the term Σ̂(qd, q̇d, q̈d, e1) ∈ R
3×1

is the intelligent vector-based term on BSNNs. Figure 2
illustrates a general overview of the proposed control
technique.

The position tracking error in joint space eq(t) ∈ R
3×1,

is defined as:

eq = qd − q (25)

where qd is the desired joint position and q is the actual
joint position. RISE control requires the evaluation of the
combined filtered tracking error in joint space denoted by
the following expression:

e1 = ėq + α1eq (26)

where α1, ∈ R
3×3 is a positive-definite, diagonal matrix.

The RISE feedback control expression is defined by the
following equation:

�RISE = (Ks + I)e1(t) − (Ks + I)e1(t0)+∫ t

0 [(Ks + I)α2e1(τ ) + βsgn(e1(τ ))]dτ
(27)

where Ks , α2, β ∈ R
3×3 are positive-definite, diagonal

matrices, I ∈ R
4×4 is the identity matrix, and sgn(.) is

the vector of the sign functions of the first filtered tracking
error. The term (Ks + I)e1(t0) is used to ensure a zero initial



J Intell Robot Syst

+
−

Fig. 2 Representation of the proposed control scheme with BSNN compensation for the DPR

control input at t = 0. The vector containing the BSNNs
outputs is defined as:

Σ̂ = [σ̂1 σ̂2 σ̂3]T (28)

where σ̂i ∀i = 1, 2, 3 denotes the respective BSNN output
used to approximate the dynamics of one DPR kinematic
chain.

4.1 Design of the Feedfoward Term Based on BSNNs

As it was mentioned above, the BSNNs aims to estimate
on-line the dynamic behavior of the DPR to include it
into the control loop as a feedforward compensation term.
In robotics the feedforward control is represented by the
following expression:

M(qd)q̈d + C(qd , q̇d)q̇d + G(qd) = �FW (29)

However, for the proposed control scheme M ∈ R
3×3,

C ∈ R
3×3, G ∈ R

3×1 are considered unknown. One can
see that the Inertia, Centripetal/Coriolis matrices, and the
gravity vector are evaluated with the desired trajectories qd ,
q̇d , q̈d . Therefore, we set the trajectories values as the data
input for the BSNNs. An important aspect of the design
of each BSNN is to define the input space lattice formed
by a set of n knot-vectors, one-knot vector for each input
axis. Once the input data is established, the next step is
to define the K order, shape, number, and distribution of
the basis functions. The K order defines the shape of the
basis functions, i.e., if K = 1, we obtain piecewise constant
functions, K = 2 leads to piecewise linear functions, K = 3
generates piecewise quadratic functions and, when K = 4
piecewise cubic functions are obtained. Selecting a higher-
order for the functions result in a better approximation.
The number of knots and the value of each one, as well
as the interval between them, are set by prior knowledge
of the selected BSNN inputs. Dynamics of Parallel Robots
are highly and complex; thus, we selected basis functions
of third-order to acquire an accurate approximation of the
dynamics behavior without making a greater number of

calculations as may occur with cubic functions. A knot-
vector is defined for each input axis considering the extreme
admissible values of the trajectories as the maximum and
minimum values of the input vectors. For the axes where qd

are the inputs the minimum and maximum values are from
-1 to 1 rad respectively, -10 to 10 rad/s for q̇d and -200 to
200 rad/s2 for q̈d . Once the input range is already defined
for the input axes, the next step is to define the number
and distribution of j − th knots of the vector. Each knot-
vector is formed by 8 knot-points and they are distributed in
groups of four elements to generate three b-spline functions
that share some knot-points among them. We selected this
configuration because it gives a good approximation of the
system behavior, as being reported in the results section.
In Fig. 3, the distribution of the knot-points and B-spline
functions for each input axis are depicted. The knot-points
values for the input axes are given in Table 3.

We proceeded to present the expression of univariate
B-Spline basis function, which is defined through the
following recurrence relationship [34]:

S
j
K(u) =

(
u−λj−K

λj−1−λj−K

)
S

j−1
K−1(u) +

(
λj −u

λj −λj−K+1

)
S

j

K−1(u)

S
j

1 (u) =
{

1 if u ∈ Ij

0 other cases

(30)

where u corresponds to the input, λj is the jth knot point
and Ij = [λj−1, λj ) is the jth interval between two-knot
points, and K is the order of the output function. The output
of each one of the BSNN can be written as follows [35]:

σ̂i =
P∑

m=1

amwm = aT
i wi ∀i = 1, 2, 3 (31)

where ai is a P -dimensional vector which contains the
outputs of the BSNN basis functions and, wi is the weights
vector. The diagram depicted in Fig. 4 represents the BSNN
configuration for the DPR dynamic estimation.
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Fig. 3 Distribution of the
proposed activation functions of
order 3 for the respective inputs

4.2 Training Algorithm

An instantaneous training algorithm is used for the BSNN;
this algorithm only adjusts the weights corresponding to
the active basis functions. The instantaneous learning rule
is formulated, minimizing an instantaneous estimation of a
performance function of the Mean Square Error (MSE) of
the output, and the parameters are updated using descending
gradient rules. The MSE estimate is given by:

J (t) = (σ̂ (t) − σ(t))2 (32)

A variation of the standard descending gradient is the Nor-
malized Least Mean Square (NLMS) algorithm employed
for instantaneous training. We used this formulation as a
learning rule because it uses few computational resources,

Table 3 Knot-points Vectors’ distribution

Input Knot-points Vector

[−1 −0.75 −0.5 −0.25]
qd [−0.5 −0.25 0.25 0.5]

[0.25 0.5 0.75 1]
[−10 −7.5 −5 −2.5]

q̇d [−5 −2.5 2.5 5]
[2.5 5 7.5 10]
[−200 −150 −100 −50]

q̈d [−100 −50 50 100]
[50 100 150 200]

which is essential for real-time implementation. The learn-
ing rule is given as follows [35]:

Wi = Wi (t − 1) + γ σ̃i(t)

||ai (t)||22
ai (t) ∀i = 1, 2, 3 (33)

Fig. 4 Diagram of the proposed BSNN used as a compensation term
for each kinematic chain of the DPR
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where γ is the learning rate, ai is the vector that contains
the output of the basis functions, Wi is the adjustable
weights vector, and σ̃i (t) = σi(t) − σ̂i (t) is the BSNN
output error. To do the on-line training of the BSNN, it
is necessary an error signal that is the difference between
the real variable and the estimated by the BSNN. However,
in this case, the real value is not available since it is
required to obtain through the BSNN. For this reason, it
is consistent with using the measurement of the robot’s
position and comparing it with the values of the established
desired trajectory to obtain an error signal. In this case,
σ̃i (t) is estimated using the composed tracking error e1, as
illustrated in Fig 2.

5 Simulation and Results

The performance of the proposed control scheme is
compared to the standard RISE controller under different
scenarios for two case studies. The first one consists of a
high-speed P&P trajectory task, and the second one is a
spiral trajectory tracking evaluated under different speeds.
The performance of each control scheme is quantified
using the Root Mean Square Error (RMSE) formula. The
following two equations established the RMSE in Cartesian
and joint space form respectively:

RMSEC =
√√
√
√ 1

N

N∑

k=1

(e2
x(k) + e2

y(k) + e2
z (k)) (34)

RMSEJ =
√√
√√ 1

N

N∑

k=1

(e2
q1(k) + e2

q2(k) + e2
q3(k) (35)

where ex, ey, ez denote the Cartesian position tracking
error of the traveling plate along the x, y, z axes, while
eq1, eq2, eq3 are the different joint space tracking errors.
Moreover, N is the number of samples and k the current
sample. The controller parameters for RISE and RISE
BSNN are shown in Table 4.

Table 4 Controllers parameters RISE/RISE BSNN

Parameter Value

α1 110

α2 8

Ks 60

β 3

γ 0.53

5.1 Case Study 1

The P&P trajectory used for this case study is represented
in Cartesian space by Fig. 5, and it composes of two
illustrations. The left illustration represents the tracking
trajectory for the first scenario executed by the DPR without
any payload, while in the second scenario, the DPR moves
masses of 1 Kg along trajectory sections. The sections of
the trajectory where the traveling plate of the DPR moves
a mass are depicted with a dotted line in red color, whereas
the solid lines in blue are the sections of the trajectory where
the DPR is moving without any payload. This trajectory is
generated using the polynomial interpolation of fifth-order
[36], [37]. This polynomial function is generated thanks to
the following two expressions:

xf = xi + r(t)Δx, f or 0 ≤ t ≤ tf (36)

And:

r(t) = 10

(
t

tf

)3

− 15

(
t

tf

)4

+ 6

(
t

tf

)5

(37)

where xi is the initial position, xf is the final position; both
are given in Cartesian space, r(t) is the trajectory function
of two points, Δx = xf − xi , and tf is the duration of
the movement. The desired trajectories respect to time in
Cartesian space are generated through Eqs. 36 and 37, they
are represented in Fig. 6. The sequence of movements for
the P&P trajectory in the (x,y) plane is the following.

1. Start-Pick: from (-0.2,-0.1) to (-0.1,0.1).
2. Pick-Place: from (-0.1,0.1) to (0,-0.1).
3. Place-Pick: from (0,-0.1) to (0.1,0.1).
4. Pick-Place: from (0.1,0.1) to (0.2,-0.1).
5. Place-Pick: from (0.2,-0.1) to (0.2,0.1).
6. Pick-Place: from (0.2,0.1) to (-0.2,0.1).
7. Place-Pick: from (-0.2,0.1) to (-0.2,-0.1).
8. Pick-Place: from (-0.2,-0.1) to (0.2,-0.1).

The previous movement sequences are performed in 0.3
seconds for both scenarios. The simulation results for the
first scenario are presented in Figs. 7 and 8. Figure 7
shows the tracking error graphs in Cartesian and joint
space. As it can be noted, the tracking errors of RISE
BSNN are noticeably smaller than those of Standard RISE
control due to the BSNN compensation terms reducing
the effect of nonlinearities, resulting in a better tracking
performance. Figure 8 displays the generated torques by
the Standard RISE and our proposed RISE BSNN in the
first column graphs, whereas the control signals that form
our proposed controller (i.e., RISE contribution and BSNN
contribution) are in the second column. It is noteworthy
that the behavior of the BSNNs outputs is very similar
to the torques produced for both control schemes, this is
due to the accurate approximation of the inverse dynamic
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Fig. 5 Desired 3D trajectory for
a P&P Task. The lines in red
correspond to trajectory portions
where the DPR is moving with a
payload and the blue lines are
the corresponding portions
without payload

model of DPR computed by the BSNNs. Moreover, as
can be seen in the same figure, the BSNN control term
produces most of the torque required to reach the desired
position, this is due to its good approximation of the inverse
dynamic model for the DPR and, on the other hand, the
term corresponding to the RISE control produces the extra
torque needed to achieve the desired position accurately.
The obtained tracking errors for the second scenario are
displayed in the graphs of Fig. 9. It can be appreciated that
the amplitude of tracking errors has increased for the two
controllers as a consequence of the addition of the moving
mass. However, the RISE BSNN control law’s performance
is still widely better than the Standard RISE controller.

The values of produced torques of this second scenario and
the contribution signals of the RISE BSNN controller are
exposed in Fig. 10. It can be seen that the curves have
doubled compared to control signals for scenario owing to
both controllers requiring more energy to move the payload
from one point to another. Figure 11 shows the evolution of
the BSNNs’ adaptive weighs for each kinematic chain of the
DPR for the two scenarios. It can be seen in all cases that
the initial value of the weights is zero, and as the trajectories
are executed, not all the weights evolve together; this is
because of the BSNNs update only the associate weights to
the current input values of the BSNNs. Besides, as it can
be observed, some of the adaptive weights associated with
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Fig. 6 Evolution of the desired
trajectories in Cartesian space
versus time for case study 1

extreme input values always remain zero; this is because
the desired trajectories used as inputs to the BSNNs are
not at those extreme range values. For example, for the
case study 2 where a change in the speed was tested, for
the lower speed scenario, only the weights related to the
position are updated because the desired trajectory reaches

the limits of the cartesian space, i.e., the main requirement
for the task is only the position. In the same way, for the
medium speed scenario, the related weights to the speed
are now updated, too, due to the speed requirement. Finally,
for the high-speed scenario, the associated weights are
updated now due to the acceleration requirement. Table 5

Fig. 7 Evolution of the tracking
errors versus time in Cartesian
and joint space for scenario 1
case study 1
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Fig. 8 Evolution of the control
signals generated by RISE and
RISE BSNN controllers (first
column), and the control
contributions of RISE BSNN
(second column) versus time for
scenario 1 case study 1

summarizes the performance of both controllers of the
proposed two scenarios using the RMSE formulas; as it
can be seen, the enhancement of RISE BSNN respect to
Standard RISE is over 80% and 79% for Cartesian and
joint space, respectively in two scenarios, reinforcing the
presented results in Figs. 7 and 9.

5.2 Case Study 2

The desired trajectory for this case study is a spiral path on
the plane (x,y) (see Fig. 12). The three scenarios proposed
for this case study are subject to changes in the speed
execution of the trajectory (low, medium, and high). The

Fig. 9 Evolution of the tracking
errors versus time in Cartesian
and joint space for scenario 2
case study 1
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Fig. 10 Evolution of the control
signals generated by RISE and
RISE BSNN controllers (first
column), and the control
contributions of RISE BSNN
(second column) versus time for
scenario 2 case study 1

following equations are used to generate the desired spiral
trajectory:

xd = r cos(2πf t)

yd = r sin(2πf t)

zd = −0.6
(38)

r = 0.04f t (39)

where r denotes the separation distance between circular
turns and f is the frequency of the circular movements. The
speed changes are achieved by modifying the value of f , we
define:

– f = 0.33Hz for low speed
– f = 1.75Hz for medium speed
– f = 3.5Hz for high speed

Fig. 11 Evolution of the BSNNs’ weights of case study 1 for scenarios 1 and 2
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Table 5 Controllers performance evaluation case study 1

Scenario Controller RMSEC [cm] RMSEJ [Deg]

RISE 0.0285 0.0491

Scenario 1 RISE BSNN 0.0055 0.0102

Enhancement 80.6% 79.1%

RISE 0.0571 0.0929

Scenario 2 RISE BSNN 0.0109 0.0194

Enhancement 80.9% 79.1%

The initial and final positions of the spiral trajectory given
in Cartesian coordinates are (0,0,-0.6) and (0,0.2,-0.6).
The objective of this study case is to know how much the
changes in speed affect the controllers’ performance. The
obtained results from this case study are illustrated in
Figs. 13, 14, 15, 16, 17, 18, 19 and 20. The tracking errors
in Cartesian and Joint space are exhibits in Figs. 13, 15, and
17 for the three scenarios. As it can be noticed, as the speed
is increasing, the overshoots amplitude on the tracking
error signals also increases. Nevertheless, the tracking errors
of the proposed controller always remain lower than the
standard RISE controller. The spiral trajectory is expected to
be completed in 14.8 s, 2.85 s, and 1.42 s for scenarios 1, 2,
and 3, respectively. The produced torques of both controllers
and the control signals of the RISE BSNN are presented
in Figs. 14, 16, and 18. It is possible to see that when the
speed increases, also the amplitude of the computed control
signals increase. However, as in the previous case study for
RISE BSNN, the control actions of the BSNNs contribute
in a more significant proportion than the RISE contribution.
Figure 19 presents the weighs evolution respect to time for
the three scenarios (low, medium, and high speed) of this
case study. As can be noted in the graphs, all the weights
values are initialized in zero. In low speed, we can see
that only four weights are changed along the trajectories
owing to the input values of the desired trajectories stay in
the range values of only one basis function; unlike in high
speed where all weights are in involved since the desired
trajectories reach the maximum limits of the knot-points
distribution. Table 6 presents the comparison of different
RMSEs for the three scenarios reinforcing the advantages
of our proposed control solution. In all scenarios of this
case study, the improvement of our controller compared to
Standard RISE is between 60% and 80%. To have a better
comprehension of how great the deterioration of the control
schemes as the speed increases is, the RMSE is plotted in
Fig. 20.

To justify the presented simulation results, in the previous
graphs it can be seen a comparison between the tracking
errors of RISE and RISE BSNN in all case studies and
scenarios that the signals of the RISE BSNN errors are

considerably smaller than those produced by standard RISE
control. Since the learning rule of the BSNN minimizes
an error signal provided by the composed tracking error
to estimate on-line the dynamic behavior of the modeled
system, it may be concluded that if the resulting tracking
error of the RISE BSNN is smaller than produced by
standard RISE, so that, the BSNN approximation is
reasonably accurate. One of the most critical things in
the design of the BSNN feedforward term is the selection
and distribution of the knot-points. However, there are no
specific criteria for the selection of these parameters, and
everything depends on the prior knowledge of the system
to be approximated by the designer. If the BSNNs are not
properly configured, the obtained signal will deteriorate
the controller performance instead of being improved. The
other problem is related to the learning rule that is based-on
gradient descend rules; these kinds of rules may fall in local
minima problems [38].

5.3 Comparison of BSNN Compensation Against
Nominal Feedforward

In the previous case studies, our proposed RISE with BSNN
compensation was evaluated to standard RISE control, and

Fig. 12 Desired spiral trajectory in the plane (x,y) for case study 2
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Fig. 13 Evolution of the
tracking errors versus time in
Cartesian and joint space
corresponding to low speed for
case study 2

Fig. 14 Evolution of the control
signals generated by RISE and
RISE BSNN controllers (first
column), and the control
contributions of RISE BSNN
(second column) versus time
that corresponds to low speed
case study 2
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Fig. 15 Evolution of the
tracking errors versus time in
Cartesian and joint space
corresponding to medium speed
for case study 2

Fig. 16 Evolution of the control
signals generated by RISE and
RISE BSNN controllers (first
column), and the control
contributions of RISE BSNN
(second column) versus time
that corresponds to medium
speed case study 2
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Fig. 17 Evolution of the
tracking errors versus time in
Cartesian and joint space
corresponding to high speed for
case study 2

the results obtained were notably superior. However, as it
was mentioned before, the BSNN compensation term aims
to emulate the Nominal feedforward term. Therefore, in
this section, our proposed control solution is compared to
the RISE feedforward, being the combination of Eqs. 27

and 29 to validate the approximation of the dynamics. The
case study 1, including the two scenarios, is considered
for this validation. Figure 21 depicts the tracking error
in the joint space of RISE feedforward and RISE BSNN
and the components compensation of both controllers

Fig. 18 Evolution of the control
signals generated by RISE and
RISE BSNN controllers (first
column), and the control
contributions of RISE BSNN
(second column) versus time
that corresponds to medium
high case study 2



J Intell Robot Syst

Fig. 19 Evolution of the BSNNs’ weights for case study 2 when the DPR is subjected to changes in the speed

Fig. 20 Degradation graphs of RMSE at different speeds for Cartesian
and joint space case study 2

when no payload is moving. It can be appreciated that
the tracking error of RISE feedforward is prominently
better than our proposition due to the evaluated dynamic
parameters in the feedforward part are entirely known,
unlike RISE BSNN, where the dynamic behavior of the
DPR is on-line estimated. However, note that the produced
compensation terms of the BSNN are similar to those
produced by the nominal feedforward even without any
information on the system dynamics. The obtained RMSEq

is 0.0045 for RISE feedforward and 0.0102 for RISE
BSNN, the first controller outcomes the second one in
56.69% for this scenario. Nevertheless, for the second
scenario where a mass of 1 kg is moved in some portions
of the trajectory, the performance of the RISE BSNN is
better than RISE feedforward, due to RISE BSNN can
compensate for the parametric uncertainty produced by the
changes in the payload along the trajectory, unlike RISE
feedforward, where the dynamic parameters are not updated
(see Fig. 22). The resulting RMSEq for the second scenario
is 0.0494 for RISE feedforward and 0.0194 for RISE BSNN,
yielding an improvement of 60% of RISE BSNN over RISE
feedforward.

6 Conclusion

In this work, a RISE controller with adaptive feedforward
compensation founded on the BSNN has been proposed.
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Table 6 Controllers performance evaluation case study 2

Speed Controller RMSEC[cm] RMSEJ[Deg]

RISE 4.622 × 10−4 0.0010

Low RISE BSNN 1.314 × 10−4 2.670 × 10−4

Enhancement 71.5% 73.6%

RISE 0.0262 0.0362

Medium RISE BSNN 0.0052 0.0073

Enhancement 80.0% 79.8%

RISE 0.1413 0.1947

High RISE BSNN 0.0434 0.0606

Enhancement 69.8% 68.5%

Three BSNN have been implemented in order to approx-
imate the inverse dynamic of each kinematic chain of the
DPR. The election of AMNN is mainly due to the low
computational cost that carries out this kind of ANN since
the computed weights are updated according to the current
input value so, not all the weights are updated at the same
time. The precise approximation of the inverse dynamics
lies mostly in the choosing inputs, the selected order for the
basis functions, and the distribution of the knots points. To
validate the effectiveness of the proposed control scheme,
numerical simulations were performed, the obtained results

were compared in a first instance to those of standard RISE
controller. The control system was evaluated in two case
studies, the first one P&P trajectory execution with changes
in the payload, and the second one a spiral path with changes
in the speed. For all the scenarios of the case studies, the
obtained results showed that the proposed control scheme
presented improvements greater than 60%. Thereby, the
use of the BSNNs as a feedforward compensation term is
a suitable alternative to improving the trajectory tracking
in PKMS even if the system is dealing with parametric
uncertainties as sudden changes in the payload. Moreover,

Fig. 21 Performance
comparison between RISE
feedforward and RISE BSNN
scenario 1 case study 1
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Fig. 22 Performance
comparison between RISE
feedforward and RISE BSNN
scenario 2 case study 1

the dynamic approximation of the BSNNs is good enough
according to the comparison of the curves with the nominal
Feedforward of a RISE Feedforward controller.
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11. Lu, X., Liu, M.: A fuzzy logic controller tuned with pso for delta
robot trajectory control. In: Industrial Electronics Society, IECON
2015-41st Annual Conference of the IEEE, pp. 004345–004351.
IEEE (2015)
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